10,834 research outputs found

    The PDF method for turbulent combustion

    Get PDF
    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion

    Pressure algorithm for elliptic flow calculations with the PDF method

    Get PDF
    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations

    Joint statistics of acceleration and vorticity in fully developed turbulence

    Full text link
    We report results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present results concerning acceleration statistics and the statistics of trapping by vortex filaments conditioned to the local values of vorticity and enstrophy. We distinguish two different behaviors between the joint statistics of vorticity and centripetal acceleration or vorticity and longitudinal acceleration.Comment: 8 pages, 6 figure

    An exact relation between Eulerian and Lagrangian velocity increment statistics

    Full text link
    We present a formal connection between Lagrangian and Eulerian velocity increment distributions which is applicable to a wide range of turbulent systems ranging from turbulence in incompressible fluids to magnetohydrodynamic turbulence. For the case of the inverse cascade regime of two-dimensional turbulence we numerically estimate the transition probabilities involved in this connection. In this context we are able to directly identify the processes leading to strongly non-Gaussian statistics for the Lagrangian velocity increments.Comment: 5 pages, 3 figure

    The 3D structure of the Lagrangian acceleration in turbulent flows

    Full text link
    We report experimental results on the three dimensional Lagrangian acceleration in highly turbulent flows. Tracer particles are tracked optically using four silicon strip detectors from high energy physics that provide high temporal and spatial resolution. The components of the acceleration are shown to be statistically dependent. The probability density function (PDF) of the acceleration magnitude is comparable to a log-normal distribution. Assuming isotropy, a log-normal distribution of the magnitude can account for the observed dependency of the components. The time dynamics of the acceleration components is found to be typical of the dissipation scales whereas the magnitude evolves over longer times, possibly close to the integral time scale.Comment: accepted for publication in Physical Review Letter

    Galilean invariance and homogeneous anisotropic randomly stirred flows

    Full text link
    The Ward-Takahashi (WT) identities for incompressible flow implied by Galilean invariance are derived for the randomly forced Navier-Stokes equation (NSE), in which both the mean and fluctuating velocity components are explicitly present. The consequences of Galilean invariance for the vertex renormalization are drawn from this identity.Comment: REVTeX 4, 4 pages, no figures. To appear as a Brief Report in the Physical Review

    Phenomenology of Wall Bounded Newtonian Turbulence

    Full text link
    We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters characterize the viscous dissipation of the components of the Reynolds stress-tensor and other two parameters characterize their nonlinear relaxation. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sub-layer, through the buffer layer and further into the log-layer. As a first approximation, we employ the traditional return-to-isotropy hypothesis, which yields a very simple distribution of the turbulent kinetic energy between the velocity components in the log-layer: the streamwise component contains a half of the total energy whereas the wall-normal and the cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von-K\'arm\'an slope Îş\kappa and the turbulent velocity in the log-law region v+v^+ (in wall units): v+=6Îşv^+=6 \kappa. These predictions are in excellent agreement with DNS data and with recent laboratory experiments.Comment: 15 pages, 11 figs, included, PRE, submitte

    Universal Model of Finite-Reynolds Number Turbulent Flow in Channels and Pipes

    Get PDF
    In this Letter we suggest a simple and physically transparent analytical model of the pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model gives accurate qualitative description of the profiles of the mean-velocity and Reynolds-stresses (second order correlations of velocity fluctuations) throughout the entire channel or pipe in the wide range of Re, using only three Re-independent parameters. The model sheds light on the long-standing controversy between supporters of the century-old log-law theory of von-K\`arm\`an and Prandtl and proposers of a newer theory promoting power laws to describe the intermediate region of the mean velocity profile.Comment: 4 pages, 6 figs, re-submitted PRL according to referees comment
    • …
    corecore